
R
e

I
a

b

a

A
A

K
C
M
D
S
P

1

c
a
i
s
w
p
u
f
u
d
p
e
c
m

0
d

Talanta 83 (2011) 1239–1246

Contents lists available at ScienceDirect

Talanta

journa l homepage: www.e lsev ier .com/ locate / ta lanta

elating gas chromatographic profiles to sensory measurements describing the
nd products of the Maillard reaction

. Stanimirovaa, C. Bouconb, B. Walczaka,∗

Department of Chemometrics, Institute of Chemistry, The University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3130 AC Vlaardingen, The Netherlands

r t i c l e i n f o

rticle history:
vailable online 13 October 2010

eywords:
hemometrics
ultiblock methods
ata fusion
ensory analysis
roduct optimisation

a b s t r a c t

Often in analytical practice, a set of samples is described by different types of measurements in the hope
that a comprehensive characterisation of samples will provide a more complete picture and will help in
determining the similarities among samples. The main focus is then on how to combine the information
described by different measurement variables and how to analyse it simultaneously. In other words, the
main goal is to find a common representation of samples that emphasises the individual and common
properties of the different blocks of variables. Several methods can be adopted for the simultaneous
analysis of multiblock data with a common object mode. These are: consensus principal component
analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices
de la statistique (STATIS).In this article we present a comparison of the performances of these methods
for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma

compounds formed during the reaction of thermal heating between one or two selected amino acids and
one or two reducing sugars have been analysed by head space gas chromatography and the intensity
and nature of the odour of the resulting products has been evaluated according to selected descriptors
by a panel of sensory experts.The results showed that using the information of the chromatographic and
sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically
multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of

sory
reaction products and sen

. Introduction

Nowadays, a primary issue for every food company in meeting
onsumers’ requirements is product optimisation. The traditional
pproach to quality control used by chemists is to analyse the chem-
cal composition of food samples. Employing separation methods
uch as liquid chromatography (LC) or gas chromatography (GC),
hich are suitable for the analysis of complex mixtures, the com-
onents of the analysed product are identified and quantified. To
nderstand the importance of the chemical components analysed
or the sensory preferences of the consumers, the final prod-
ct is also evaluated according to a number of relevant sensory
escriptors of smell and/or taste. The relationship between the
hysico-chemical composition of a product and its sensory prop-

rties can be very complex. Often substances present in very low
oncentrations in a food mixture can give rise to very intense aro-
as and strong flavours.

∗ Corresponding author. Tel.: +48 32 359 2115; fax: +48 32 259 9978.
E-mail address: beata@us.edu.pl (B. Walczak).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.09.018
profiles.
© 2010 Elsevier B.V. All rights reserved.

Perception depends on the individual tasting the product, some
people being sensitive to certain components and others very
insensitive. In addition, the context in which a product is con-
sumed, previous experience with similar products and expectation
will also influence the perception and ultimately the preference of
consumers. Therefore, experts trained in judging a number of care-
fully selected descriptors of flavour and smell usually evaluate the
final product. The use of a specially trained panel is quite expen-
sive, but to date has been an irreplaceable approach for the sensory
description of unknown samples. Electronic systems of chemical
sensors like an electronic nose or tongue, which mimic human per-
ception, are used for routine sensory control of products of a known
quality [1–3].

The purpose of this work is to show that the use of informa-
tion about the composition of a product and sensory measurements
in conjunction can provide a more complete picture for the prod-
uct or system being studied. Specifically, the goal is to reveal the

(dis)similarities of a set of mixture samples characterised by at least
two sets of variables, e.g. chromatographic profiles and sensory
measurements and to explore the relationship among the groups
of different variables. In other words, we seek a well-defined com-
mon representation of samples which emphasises the individual
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nd common properties of the blocks of variables. To find such a
ompromise of different blocks of variables measured on the same
et of samples, several approaches can be used. Here, we will illus-
rate the performance of consensus principal component analysis,
PCA [4], SUM-PCA [4], multiple factor analysis, MFA [5–7] and
tructuration des tableaux à trois indices de la statistique, STATIS
8–10] for a dataset describing the products of the Maillard reac-
ion. The products of the chemical reaction between selected amino
cids and selected reducing sugars during thermal heating have
een analysed by head space gas chromatography and the intensity
nd nature of the odour of the resulting products have been evalu-
ted by experts in sensory analysis according to carefully selected
escriptors.

Several studies [11,12] were carried out on the dataset chosen
o be used in this work. Clustering methods such as the Neural-
as network, Generative Topographic Mapping, Bottleneck Neural
etworks, the Sammon’s mapping and the Kohonen self-organising
aps were all performed using the chromatographic data only. In

his study, we offer a concept for the simultaneous analysis of chro-
atographic profiles and sensory measurements using multiblock
ethods.
Depending on the way in which the common components

re obtained from all of the blocks, one can distinguish between
equential [4,13] and simultaneous methods. A general overview
f simultaneous methods for multiblock analysis has recently been
escribed in the literature [14]. Even though CPCA and SUM-PCA

nitially belong to the first category of methods, the same results
an be obtained in a simultaneous way. These particular methods
ere selected for use in this study because of the different ways in
hich they handle the variation and size differences among blocks

f variables. When combined with an appropriate preprocessing
rocedure to correct for scale differences among variables, these
ethods may enhance the interpretability of the data being studied

nd it is our intention to illustrate this using the Maillard reaction
ata [11,12].

In the theoretical Section 2, the properties of the chemometric
ethods for multiblock analysis are described. Some relevant tech-

ical details concerning the Maillard reaction, experimental design
nd analytical method used are discussed in Section 3 of this article.
n Section 4, a detailed description of the strategy for data analysis
nd the results obtained from different methods are presented and
iscussed. Finally, the concluding remarks follow in Section 5.

. Theory

As was already mentioned, we focus mainly on the methods
hat are used for the analysis of multiblock data where a set of
amples is described by several sets of variables. The K blocks of
ariables can be merged in one matrix X = [X1 X2 . . . XK] so that
ach row is the ith analysed sample (i = 1, 2,. . .,I) characterised by

1 + J2 + · · ·+ JK variables. Each set of variables measured for I sam-
les has the dimensions I × Jk. The index k = 1, 2,. . .,K shows the
umber of blocks. To visualise the distribution of samples in a low
imensional space spanned by a few uncorrelated factors, principal
omponent analysis, PCA, can be used on the concatenated X. The
odel can be presented in the following way:

= [ X1 X2 . . . XK ] = T[ P1
T P2

T . . . PK
T ]

+ [ E1 E2 . . . EK ] (1)
In this model, T is a scores matrix of the dimension I × F, the F
olumns of which are the principal components obtained as the
eighted sum of the original variables by maximising the data

ariance. The scores matrix T is related to the common objects
ode. The elements of matrices P1 (J1 × F), P2 (J2 × F) and PK (JK × F)
83 (2011) 1239–1246

are called loadings and give information about the impact of each
block variable on the common principal components constructed.
The concatenated matrix E = [E1 E2 . . . EK] of the dimensions
I × J1 + J2 + · · · + JK is called a residuals matrix and contains the part
of the data variance not explained by the model with a definite
number of components.

In a more general way, the model presented in Eq. (1) can be
expressed by

[ q1X1 q2X2 . . . qK XK ] = T[ P1
T P2

T . . . PK
T ]

+[ E1 E2 . . . EK ] (2)

The difference is that each variable within a block is now
weighted by a specific weight, q1, q2,. . .,qK accounting for varia-
tion differences among the blocks. All variables of a given block are
weighted with the same weight. In general, the weighting scheme
is different depending on the particular method used. Accordingly,
each type of weighting scheme puts different weights on the blocks
of variables indicating the differences in the importance of the block
variables in the common structure obtained from various methods.
In the next paragraphs, a brief description of the weighting schemes
used by different methods will be given along with their specific
properties.

2.1. Consensus-principal component analysis, CPCA

Consensus-PCA [4] is in fact principal component analysis
applied on a concatenated matrix X. In the original NIPALS-like
algorithm of the method, the so-called super score vectors T are
obtained sequentially, one by one in an iterative way. The block
loadings are then found by projecting the original block vari-
ables onto the score vectors. The decomposition follows the model
described by equation 1 which is equivalent to the model presented
by Eq. (2) with weights qk = 1. It can also be performed using the sin-
gular value decomposition, SVD, algorithm on the concatenated X.
Because the method does not account for variation and size dif-
ferences among the blocks of variables, the group with the largest
number of variables will have a predominant influence in the anal-
ysis. This method is preferred when the variables of different blocks
are expected to give different information.

2.2. SUM-PCA

SUM-PCA [4] can also be seen as PCA applied to data which must
be preprocessed so that the sum of the squares of each block, SSk,
of variables equals one. This gives a comparable weight (1/

√
SSk)

to each bock emphasising the variables of the smaller blocks. The
scaling procedure is equivalent to assigning weights to the data and
as a consequence the variables of the larger block will be down-
weighted more in comparison with the variables belonging to the
smaller blocks. To eliminate the differences in the units of vari-
ables, autoscaling can be performed beforehand. It has been shown
in Ref. [4] that another multiblock method, CPCA-W, gives exactly
the same results as SUM-PCA.

2.3. Multiple factor analysis, MFA

MFA [5–7] is a factor analysis in which the variables of each
group are weighted so as to correct for individual matrix size, while
ensuring that none of the variables have too profound an effect on

the first factor in the global solution of MFA analysis. The weights
qk are defined as the inverse of the first singular value or the inverse
of the square root of the first eigenvalue of Xk

TXk block. Thanks to
this specific weighting scheme, MFA highlights the similarity of the
information content of different groups of variables.
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.4. STATIS

Like the other methods described earlier, STATIS [8–10] can be
iewed as PCA of the concatenated data where the variance of each
ata block is weighted. The weights reflect the similarity between
ach individual block of variables and a compromise defined as the
eighted sum of block cross-product matrices,

∑K
k=1qkXkXk

T . The
lock that is the least similar to the compromise has a weight close
o zero. The weights are determined as normalized elements (their
um is equal to one) of the first eigenvector of the so-called RV
15] matrix which holds the RV coefficients. The RV coefficient is a

easure of closeness between any two cross-product matrices. It is
ositive and its value varies in the range of [0,1]. Two cross-product
atrices are more similar if their respective RV coefficient is closer

o one. As a consequence of the weighting scheme in STATIS, the
lock of variables which shares more information with the other
locks of variables is highlighted. This holds true for more than two
locks of variables (K > 2). Without correction for block sizes more
eight will be put on the matrix with the larger sum of squares.

. Experimental

.1. Maillard reaction

The term Maillard reaction, or nonenzymatic browning, was
oined in honour of its inventor, Louis-Camille Maillard (1913). It is
ne of the major reactions responsible for the formation of aromas
nd colours in food products where thermal processing has been
pplied. As is shown in Fig. 1, it is a very complex series of reactions
hich involves the presence of the carbonyl group of a reducing

ugar and the free amino group of an amino acid or protein. Numer-
us factors such as temperature, time, composition of the system,
ater activity, pH and sulphur dioxide are known to affect the rate

nd products of the reaction. Due to the large number of reactants
hat can combine in many different ways, it generates a very large
ariety of compounds with desirable as well as undesirable sen-

ory characteristics. It may also result in a reduction in nutritional
alue, the development of antioxidant properties, and the forma-
ion of potentially toxic compounds. It also has some physiological
amifications [16]. Therefore, the Maillard reaction has been stud-
ed widely by scientists from different fields. The food industry is

Reducing sugar and amino acids

N-glycosylamines or N-fructosylami

1-Amino-1-deoxy-2-ketose or 1-Amino-2-deo
(Amadori or Heyns intermediates

Reductones and dehydroreducton

NH3 H2S
Retro-aldoliza

3-Furanones
4-Pyranones
Pynoles
Thiophenes

Hydroxyacetone
Cyclotene
Dihydroxyacetone
Hydroxyacetyl

Glyoxal
Pyruvald
Glycolal
Glyceral

Acetoin

Pyridine
Pyrazine
Oxazole

Fig. 1. Formation of the Maillard c
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particularly interested in it as it can provide a way to control and
improve food quality by “natural” means and thus fulfil consumers
demands for tasty and natural products [17,18].

3.2. Material and methods

Chemicals. The following compounds were obtained com-
mercially: d-glucose, d-fructose, �-lactose, l-rhamnose, d-xylose,
maltose, (dl)-alanine, glycine, l-threonine, (dl)-asparagine, l-
glutamine, l-lysine.HCl, l-arginine.HCl, l-cysteine, l-glutamic acid,
l-proline, l-methionine (Acros Organics, Geel, Belgium), glycerol,
dichloromethane, 3,5-trimethoxybenzene and p-xylene (Merck,
Darmstadt, Germany).

Sample preparation. Samples were prepared by mixing sugars
and amino acids in a 50 mL glycerol buffer solution at pH 3. The
reaction mixture was heated in a metal heating block at 120 ◦C for
60 min. After cooling at −40 ◦C for 2 minutes, 10 mL of water was
added and samples were vortexed briefly

Isolation of the volatiles. On the one hand, 10 g of the sam-
ples were collected for sensory evaluation. On the other hand,
4 mL of dichloromethane containing two internal standards (1,3,5-
trimethoxybenzene and p-xylene) were added to the reminder of
the reaction mixture for GC analysis. The samples were then cen-
trifuged again for 90 sec. After separation, the dichloromethane
layered was pipetted, filtered and transferred into a GC vial

Gas chromatography (GC). All analyses were performed on a
Hewlett-Packard 6890 gas chromatograph coupled with a Flame
Ionisation Detector (FID) using a HP ChemStation software. An
aliquot of 0.1 �L was injected in the splitless mode onto a CP-WAX
52-CB capillary column (10 m × 100 �m i.d. × 0.2 �m film thick-
ness). The oven temperature was set to 50 ◦C for 1 min, then raised
to 240 ◦C with a heating rate of 540 ◦C/min, and held for 1 min.
Finally the oven temperature was set to 160 ◦C. A total of 159
volatile compounds were identified and quantified.

3.3. Data description
The data set presented in this article consists of 576 chemi-
cal mixtures prepared so that they contain one or two out of six
reducing sugars (fructose, glucose, lactose, maltose, rhamnose and
xylose) and one or two out of 11 amino acids (alanine, asparagine,

nes

xy-2-aldoses
)

-3H2O

Furfural
(from pentose)

Hydroxymethyl-5
furfural
(from hexoses)

es

tion

ehyde
dehyde
dehyde

Amino
acids

Strecker
degradation

Aldehydes + aminoketones
(+H2S and NH3 from cysteine)

Heterocyclization

s
s
s

Thiazoles
Pynoles
Imidazoles

ompounds in food products.
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Table 1
Variance explained by the number of PCs obtained from individual principal compo-
nent analyses and the RV and RVmodified coefficients describing the degree of overlap
between the two score matrices of a definite number of PCs.

PC GC data [%] Sensory data [%] RV RVmodified

1 11.2 30.3 0.0013 5.10−4

2 16.0 46.7 0.11 0.10
3 20.2 60.9 0.20 0.19
4 23.5 71.6 0.28 0.27
5 26.2 79.3 0.27 0.27
6 28.8 85.9 0.30 0.29
7 30.9 91.9 0.30 0.29
8 32.9 95.9 0.30 0.30
242 I. Stanimirova et al. / T

hreonine, arginine, cysteine, glutamine, glutamate, glycine, lysine,
ethionine and proline).
Each of the 576 mixtures was also evaluated using 10 descriptors

f smell (overall intensity, sulphur, meaty, caramel, burn, nutty,
opcorn, jammy, potato and aldehyde) by a small expert panel.
or each sample and each descriptor, each expert gave a score in
he range [0,4]. A score of 0 indicated that the smell is not present
n the samples being considered, while a score of 4 indicated the
resence of a highly intense smell. The average scores of the panel
ere then calculated and are reported in the sensory block. The
nal augmented data X is of the dimensions 576 × 169 containing
wo blocks of variables (K = 2), gas chromatographic data, X1, of
he dimensions 576 × 159 and sensory data, X2, of the dimensions
76 × 10.

All calculations using in-house implemented routines were per-
ormed with MATLAB 7.0 (R14) on a personal computer (Intel(R)
entium(R) M, 1.60 GHz with 2 Gb RAM) using Microsoft Windows
P (service pack 2) operating system.

. Results and discussion

Before describing the multiblock analysis of the data, it is useful
o look at the analysis of gas chromatographic and sensory data sep-
rately. The variables of both sets were subjected to an autoscaling
rocedure. Autoscaling is a combination of column centering and
caling to a unit standard deviation which gives the variables the
ame importance in the analysis. This procedure will be used with
ll methods of multiblock analysis to enable a better comparison.

In order to investigate what amount of information explained by
hromatographic data overlaps with the information in the sensory
easurements, the RV [15] coefficient can be calculated. The RV

oefficient is a rotation invariant measure of the similarity between
wo cross-product matrices that has values in the range of [0,1]. As
as already mentioned, the closer the RV coefficient is to one, the
ore similar the two cross-product matrices are. In this case, the RV

oefficient is used to measure the degree of correlation of the two
utoscaled data sets, sensory and chromatographic data, respec-
ively. Recently, a modified version of the RV correlation coefficient
as been introduced [19]. The modified RV coefficient eliminates
he possibility of obtaining a relatively high RV coefficient when a
eal underlying relationship between the two sets of variables is
ot expected. Compared to the original RV, the modified RV has
alues in the range of −1 and 1 and can be interpreted as the Pear-
on’s correlation coefficient. The modified RV for the two autoscaled
ets is equal to 0.30 indicating a relatively low degree of overlap.
his RV value also shows that both datasets contain some common
nformation, but that they also have unique parts. From an experi-

ental point of view, this observation indicates that probably not
ll of the compounds analysed by GC are associated with the devel-
pment of the specific smells the intensity of which was evaluated
y the experts in sensory analysis. Accordingly, one may also expect
hat somewhat different results might be obtained from the various

ethods for simultaneous multiblock analysis.

.1. Analysis of the individual GC and sensory data

Another way to look at the data sets separately is to investigate
he essential correlation between the blocks after reducing the level
f noise in each of them using PCA, and comparing the variance
xplained by the number of principal components. Again the RV

oefficient can be used to see the similarity of each two score spaces
efined for a given number of PCs. Table 1 summarises the results.

There is not a substantial change in the RV coefficient values
fter four principal components. Slightly lower values are observed
or the modified RV in comparison with the original RV indicating
9 34.8 99.3 0.30 0.30

that in this case, both coefficients reveal the real underling rela-
tionship between the two sets of variables. The results confirm that
even though there is an overlap between the GC and sensory data,
there are also substantial parts that are unique for the individual
sets. From the values of the percentages of variance for the number
of PCs presented in Table 1, it can be seen that four PCs explain 23.5%
of the chromatographic data variance, while the same number of
PCs explains 71.6% of the variance in the sensory data. For illus-
trative purposes, the projections of mixtures and variables in the
spaces spanned by the first two PCs for both analyses are presented
in Fig. 2.

An interesting general observation is that the variance explained
by the first two PCs in the chromatographic data (see Fig. 2a and b)
is associated with the distinction between the mixtures containing
rhamnose and xylose, while in the sensory dataset the difference of
cysteine and methionine mixtures from all of the other mixtures is
highlighted (see Fig. 2c and d). The lack of influence of amino acids
on the distinction of the mixtures using their chromatographic pro-
files has also been observed with other clustering methods such as
the Neural-Gas network, Generative Topographic Mapping, Bottle-
neck Neural Networks, the Sammon’s mapping and the Kohonen
self-organising maps and was reported in Ref. [11].

The loadings plot in Fig. 2b shows that the variables respon-
sible for the clustering trend observed along PC 2 in Fig. 2a are
nos. 45, 137, 128, 71, 51 and 70 with negative loading values
and no. 64 with a positive loading value. The high intensity of
peak 64 and low intensities of peaks 45, 137, 128, 71, 51 and
70 are characteristic for rhamnose-containing mixtures, whereas
the opposite tendency holds true for xylose-containing mixtures.
Cysteine-containing mixtures seem to have the most intense meat-
like and sulphur smell. Cysteine actually is a sulphur-containing
amino acid. The other amino acid-containing sulphur is methio-
nine, but generates a highly intense smell of potatoes. In the food
industry, methionine is usually added to some products to enhance
the soft flavour of potatoes. Mixtures containing amino acids other
than cysteine or methionine in a combination with one of the reduc-
ing sugars are characterised mostly by a caramel and jammy smell.

The projections of mixtures in the spaces spanned by the other
pairs of principal components were also carefully inspected. Since
they did not provide any new information about the clustering ten-
dency in both chromatographic and sensory data analyses, they are
not presented here.

As was mentioned before, when the aim of the analysis is to
relate the blocks of variables, we look for a compromise representa-
tion of samples in a component space of the various block variables.
In the next sub-section, a comparison of the compromise represen-
tations obtained from different methods for multiblock analysis is

presented. Again each variable was subjected to autoscaling. With
STATIS autoscaling per variable and correction of blocks size were
applied.
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mation about the sugar in the mixtures, while the sensory data
emphasise the mixtures containing some specific amino acids like
cysteine and methionine. For autoscaled data, the methods that put
a higher weight on GC or sensory data show higher coefficients

Table 2
The Tucker’s coefficient of congruence between the score matrices with four com-
ponents (f = 4) obtained from simultaneous methods of multiblock analysis.

PCAsensory PCAGC CPCA MFA SUM-PCA STATIS

PCA 1
ig. 2. Principal component analysis applied to 576 × 159 gas chromatographic an
y the first two principal components after PCA of GC data, (b) projections of GC v
ixtures into the space spanned by the first two principal components after PCA o

y the first two principal components.

.2. Analysis of the similarity between GC and sensory data using
ethods for simultaneous multiblock analysis

In order to investigate the similarity of the compromise rep-
esentations, i.e. score spaces, T, obtained using various methods
hat can handle multiblock data, the Tucker’s coefficient of congru-
nce can be used. For two sets of score vectors, T1 and T2 obtained
rom methods 1 and 2, the coefficient of congruence, ϕ, is calculated
sing the following equation:

= tr(T1T2
T )√

tr(T1T1
T )tr(T2T2

T )
(3)

In this equation ‘tr’ denotes the sum of the diagonal elements
f the resulting matrices obtained from the matrix multiplication
n the brackets. The definition of ϕ is the same as the definition
f the correlation coefficient, in which the centering procedure is

mitted. It takes values between −1 and 1 for perfectly congruent
istributions of samples. Because of the rotational freedom of PCA,
he estimation of ϕ was performed after the Procrustes rotation
nd isotropic scaling of the two score matrices investigated. The
alues of ϕ estimated for each pair of four-component score matri-
× 10 sensory data separately: (a) projections of mixtures into the space spanned
s into the space spanned by the first two principal components, (c) projections of
ry data and (d) projections of sensory descriptors of smell into the space spanned

ces obtained using the different methods and from the individual
principal component analyses of gas chromatographic and sensory
data are presented in Table 2.

The lowest congruence was observed for the individual anal-
ysis of GC and sensory data, which confirms the results obtained
earlier that the PC analysis of GC data mainly highlights infor-
sensory

PCAGC 0.50 1
CPCA 0.62 0.98 1
MFA 0.92 0.74 0.82 1
SUM-PCA 0.98 0.62 0.72 0.98 1
STATIS 0.98 0.62 0.72 0.98 1 1
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ig. 3. Multiple factor analysis, MFA, of the concatenated data X (576 × 169): (a) p
rojections of mixtures into the space spanned by the first and third components o
he first two components of MFA and (d) projections of GC variables and sensory de

f congruencies with the compromises of individual PCA analy-
es of GC or sensory data, respectively. In this context, CPCA puts
higher weight on the block with more numerous variables, i.e.

he GC data. This results in a better congruence between the com-
romise scores matrix of CPCA and the scores matrix from PCA of
C data (ϕ = 0.98) than the congruence between the compromise
cores matrix of CPCA and the scores matrix from PCA of sensory
ata (ϕ = 0.62). Due to the lack of a correction for block size and
ariation differences, the compromise representation from CPCA
as relatively lower values of ϕ with the compromises from the
ther methods, i.e. 0.82 with MFA, 0.72 with SUM-PCA and STATIS.
n opposite tendency was observed for SUM-PCA. Because each
lock of variables was scaled to the sum of squares one, the block
ith fewer variables was highlighted, while the block with more

ariables was downweighted. Consequently a better congruence
etween the compromise scores matrix of SUM-PCA and the scores
atrix from PCA of sensory data (ϕ = 0.98) was observed in compar-

son with the congruence between the compromise scores matrix of

UM-PCA and the scores matrix from the PCA of GC data (ϕ = 0.62).
t is worth noting that for two blocks of variables SUM-PCA and
TATIS gave the same compromise representations as indicated
rom the values presented in Table 2. A perfect congruence of both
epresentations was also indicated by ϕ = 1. Please note that with
tions of mixtures into the space spanned by the first two components of MFA, (b)
, (c) projections of GC variables and sensory descriptors into the space spanned by
ors into the space spanned by the first and third components of MFA.

STATIS we used autoscaling per variable of a block and a correc-
tion for block size. Without a correction of block size, STATIS uses
a higher relative weight to the GC data because of their larger sum
of squares.

As can be seen from the values presented in Table 2, a more bal-
anced representation of the two blocks of autoscaled variables is
found with MFA. A higher weight, but lower than in SUM-PCA, was
attributed to the sensory data and a lower weight, but higher com-
pared to SUM-PCA, was put on the GC data. In general, if the aim of
the analysis is to find a common structure, which agrees with the
individual principal component analyses, both MFA and SUM-PCA
would be suitable. Here, we will mainly focus on the interpreta-
tion of the common representation of samples obtained by MFA.
The reason is that we are mainly interested in the possibility of
comparing the information content of GC and sensory variables by
eliminating the predominant influence of the GC variables in the
simultaneous analysis.

The projections of mixtures (see Fig. 3a and b) and the cor-

responding projections of variables (see Fig. 3c and d) onto the
selected compromise components of multiple factor analysis are
shown in Fig. 3.

Although there is a slight overlap, some groups of a higher den-
sity can be observed in both plots representing the distribution of
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ig. 4. Two-way hierarchical clustering applied to autoscaled and MFA-weighted
imilarity measure was used for the mixture samples, while the single linkage me
orresponding heat map is related to the intensity of a smell.

ixtures. This clustering tendency is more clearly emphasised in
he plot of the first versus the third component (compare Fig. 3a
nd b). Compared with the projections obtained from the analysis
f individual blocks of data that are shown in Fig. 2, a more com-
rehensive picture can now be seen. An interesting observation is
hat in addition to methionine- and cysteine-containing mixtures
istinguished in the individual analysis of sensory data, one can
ow differentiate all the rhamnose-containing mixtures from the
est of the mixtures. The combinations of rhamnose and cysteine as
ell as rhamnose and methionine are also clearly separated. Look-

ng at the projections of variables (see Fig. 3c and d) indicating the
mpact of each variable on the construction of a given component,
t can be observed that cysteine-, methionine- and methionine- and
hamnose-containing mixtures have a strong overall odour in com-
arison with the other mixtures. The changes in the intensity of the
eat-like or sulphur smell can be indicated by peak 56 and all of

he chromatographic variables with positive loading values along
he first component (see Fig. 3c). The highly intense sulphur smell
f cysteine mixtures is related to the high intensity of peak 46 and

he low intensity of all peaks with positive loading values along
he first component. Among the three groups with the meat-like
nd sulphur smell, the rhamnose- and methionine-containing mix-
ures have the least intense smell. In general, the groups containing

ethionine have a potato-like smell, which is indicated by the pro-
The Ward’s method for hierarchical clustering with the Euclidean distance as a
with the 1 − |r| as a similarity measure was applied for the sensory variables. The

jections in Fig. 3b and d along with the third component of MFA.
The potato smell is also related to peaks 34, 106, 136, 88 and 50. A
less intense potato smell is characteristic for the methionine- and
rhamnose-containing mixtures, which might be explained by the
aldehyde smell associated with rhamnose that partially masks the
potato smell. The high intensity of peaks 73, 64, 55, 65 and 144 is
also characteristic for the rhamnose-containing mixtures. A nutty
smell is attributed to the proline mixtures. Peaks 49 and 56 are also
characteristic for these mixtures (see Fig. 3d).

In order to be able to observe the pattern of all mixtures in
the whole space of variables, the autoscaled and MFA-weighted
data can also be used as input into a two-way hierarchical cluster-
ing. Using the methods of hierarchical clustering, a unique order of
mixtures is established by joining them together according to a sim-
ilarity measure. Here, the Ward’s method for hierarchical clustering
with the Euclidean distance as a similarity measure was used [20]
for the mixture samples, while the single linkage method with the
correlation coefficient as a similarity measure was applied for the
sensory variables. Specifically, 1 − |r| was adopted, which implies

that highly correlated variables are linked at the lower levels of
the dendrogram. The objects linked at the lower levels of the den-
drogram are more similar to each other. The interpretation of the
dendrograms can be extended by a so-called heat or colour map
[21]. Each pixel of the heat map has a colour proportional to the
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alues of variables in the original data. The two dendrograms for
he autoscaled and MFA-weighted data and the corresponding heat

ap constructed for the sensory variables are shown in Fig. 4.
Five clusters denoted as C1–C5 in the figure were obtained by

utting the links of the dendrogram at the selected level (see Fig. 4
bove). The first group, C1, consists of methionine-containing mix-
ures. The heat map shows that these mixtures, together with the
ysteine-containing mixtures, C5, are characterised by the most
ntense overall smell. However, the first group has the smell of a
otato, while mixtures in the fifth group have an intense meat-like
nd sulphur smell. The second group, C2, of rhamnose mixtures and
he third group, C3, of proline-containing mixtures produce a less
ntense overall smell. An interesting finding is that the mixtures
ontaining proline have a nutty-like smell, while the presence of
hamnose in the mixtures contributes to an intense aldehyde-like
mell as indicated by the heat map in Fig. 4. The largest group,
3, of mixtures contains all of the other sugars with the excep-
ion of rhamnose and these mixtures have the least intense overall
mell. For them, a strong caramel/jammy smell is often recognised.
he results from the two-way hierarchical clustering of weighted
ata complete the results obtained from the MFA analysis. A more
etailed data interpretation can be obtained by considering the
imilarity among the mixtures at the lower levels on the dendro-
ram and the impact of the sensory variables ordered according to
− |r|, can be observed with the help of a heat map.

. Conclusions

A comparison of the results obtained from the individual prin-
ipal component analyses and the results from the methods for
imultaneous multiblock analysis showed that the use of the infor-
ation of the chromatographic and sensory data in conjunction

nhanced the interpretability of the data. When the aim of the
tudy is to obtain a common structure of the blocks of variables
hich share similar information, but also have unique parts, both

UM-PCA and multiple factor analysis, MFA are suitable. In the case
f the example data described in this paper, MFA was preferred

ecause of the possibility of reducing the predominant influence
f gas chromatographic variables in the compromise representa-
ion of mixtures. Thanks to the specific weighting scheme of MFA,
t was possible to relate the content of the chemical mixtures to the
ensory profiles of the products from the Maillard reaction. More-

[

[
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over, a more detailed interpretation of the similarities among the
mixtures was obtained using the Ward’s method of hierarchical
clustering on the autoscaled and MFA-weighted data.
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